Advanced Infrared Semiconductor Laser RICE based Chemical Sensing Technologies

<u>F.K. Tittel</u>, Y. Bakhirkin, R.F. Curl, A.A. Kosterev, R. Lewicki, S. So and G. Wysocki

Rice Quantum Institute, Rice University, Houston, TX, USA http://ece.rice.edu/lasersci/

OUTLINE

Prokhorov Seminar on TDLS

> Moscow, Russia

March 12, 2008

- Motivation: Wide Range of Chemical Sensing
- Fundamentals of Laser Absorption Spectroscopy
- New laser sources and sensing technologies
- Selected Applications of Trace Gas Detection
 - Quartz Enhanced L-PAS (ammonia, Freon 125 and acetone)
 - Nitric Oxide Detection (Faraday Rotation & Remote Sensing)
- Future Directions and Conclusions

Work supported by NSF, NASA, DOE, and Robert Welch Foundation

Wide Range of Trace Gas Sensing Applications

- Urban and Industrial Emission Measurements
 - Industrial Plants
 - Combustion Sources and Processes (e.g. fire detection)
 - Automobile, Truck, Aircraft and Marine Emissions
- Rural Emission Measurements
 - Agriculture & Forestry, Livestock
- Environmental Monitoring
 - Atmospheric Chemistry
 - Volcanic Emissions
- Chemical Analysis and Industrial Process Control
 - Petrochemical, Semiconductor, Nuclear Safeguards, Pharmaceutical, Metals Processing, Food & Beverage Industries
- Spacecraft and Planetary Surface Monitoring
 - Crew Health Maintenance & Life Support
- Applications in Health and Life Sciences
- Technologies for Law Enforcement and National Security
- Fundamental Science and Photochemistry

Fundamentals of Laser Absorption Spectroscopy

C - total number of molecules of absorbing gas/atm/cm³ [molecule·cm⁻³ \cdot atm¹]

S – molecular line intensity [cm \cdot molecule⁻¹]

 $g(v - v_0)$ – normalized spectral lineshape function [cm], (Gaussian, Lorentzian, Voigt)

Key Requirements: Sensitivity, specificity, rapid data acquisition and multi-species detection

Optimum Molecular Absorbing Transition

- Overtone or Combination Bands (NIR)
- Fundamental Absorption Bands (MID-IR)

Long Optical Pathlengths

- Multipass Absorption Cell
- Cavity Enhanced, Cavity Ringdown & Intracavity Spectroscopy
- Open Path Monitoring (with retroreflector)

Spectroscopic Detection Schemes

- Wavelength & Frequency Modulation
- Balanced Detection
- Zero-air Subtraction
- Photoacoustic Spectroscopy

Mid-IR Source Requirements for Laser Spectroscopy

REQUIREMENTS	IR LASER SOURCE		
Sensitivity (% to ppt)	Wavelength, Power		
Selectivity (Spectral Resolution)	Single Mode Operation and Narrow Linewidth		
Multi-gas Components, Multiple Absorption Lines and Broadband Absorbers	Tunable Wavelength		
Directionality or Cavity Mode Matching	Beam Quality		
Rapid Data Acquisition	Fast Time Response		
Room Temperature Operation	No Consumables		
Field deployable	Compact & Robust		

Molecular Absorption Spectra within two Mid-IR Atmospheric Windows

Source: HITRAN 2000 database

IR Laser Sources and Wavelength Coverage

Key Characteristics of mid-IR QCLs and ICL Sources

- **Band** structure engineered devices (emission wavelength is determined by layer thickness – MBE or MOCVD); mid-infrared QCLs operate from 3 to 24 µm
- Compact, reliable, stable, long lifetime, and commercial availability
- Fabry-Perot (FP), single mode (DFB) and multi-wavelength
- **Spectral tuning range in the mid-IR** (4-24 µm for QCLs and 3-5 µm for ICLs)

 - 1.5 cm⁻¹ using injection current control
 - 10-20 cm⁻¹ using temperature control
 - > 265 cm⁻¹ using an external grating element and with heterogeneous cascade active region design
 - <u>Narrow spectral linewidth</u> cw: 0.1 3 MHz & <10Khz with frequency stabilization (0.0004 cm⁻¹); pulsed: ~ 300 MHz (chirp from heating)

High pulsed and cw powers at TEC/RT temperatures

- Pulsed peak powers of 1.6 W; high temperature operation ~425K
- Average power levels: 1-600 mW (current wall plug $\eta \sim 4\%$)
- \sim 50 mW, TEC CW DFB (a) 5 and 10 µm Alpes; Princeton,
- Adtech Optics, Maxion Technologies, Hamamatsu, Daylight $\sim 300 \text{ mW}$ @ 8.3 µm (Agilent Technologies & Harvard)
- > 600 mW (CW FP) @RT & a wall plug efficiency of > 9.3%; >150 mW (CW DFB) at 298 K (Northwestern)

Widely Tunable, CW, TEC Quantum Cascade Lasers

Tunable external cavity QCL based spectrometer

- Fine wavelength tuning
 - PZT controlled EC-length
 - PZT controlled grating angle
 - QCL current control
- Motorized coarse grating angle tuning
- Vacuum tight QCL enclosure with build-in 3D lens positioner (TEC laser cooling + optional chilled water cooling)

Wide Wavelength Tuning of a 5.3µm EC-QCL

Performance of 8.4 µm EC-QCL Spectroscopic Source

Quartz Enhanced Photoacoustic Spectroscopy

From conventional PAS to QEPAS

Quartz Tuning Fork (TF) as a Resonant Microphone

- Resonant frequency f=32.8 kHz
- Intrinsically high Q factor: $Q_{\text{vacuum}} \sim 125\ 000$, $Q_{\text{air}} \sim 10\ 000$ at ambient conditions;
- Piezoelectric: requires no transducer
- Miniature size
- Mass produced for clocks low cost

QEPAS Signal Detection

Absorption Detection Module for QEPAS based Gas Sensor

Comparative Size of Absorption Detection Modules (ADM)

Alignment-free QEPAS Absorption Detection Module

Merits of QE Laser-PAS based Trace Gas Detection

- High sensitivity (ppm to ppb gas concentration levels) and excellent dynamic range
- Immune to ambient and flow acoustic noise, laser noise and etalon effects
- Significant reduction of sample volume (< 1 mm³)
- Applicable over a wide range of pressures
- Temperature, pressure and humidity insensitive
- Rugged and low cost (compared to other optical sensor architectures)

Trace Gas Sensing Examples

Motivation for NH₃ Detection

- Monitoring of gas separation processes
- Detection of ammonium-nitrate explosives
- Spacecraft related gas monitoring
- Monitoring NH₃ concentrations in the exhaust stream of NO_x removal systems based on selective catalytic reduction (SCR) techniques
- Semiconductor process monitoring & control
- Monitoring of industrial refrigeration facilities
- Pollutant gas monitoring
- Atmospheric chemistry
- Medical diagnostics (kidney & liver dysfunctions)

Infrared NH₃ Absorption Spectra

QEPAS based Gas Sensor Architecture

Calibration and Linearity of a 1.53 μ m QEPAS based NH₃ Sensor

Noise–equivalent concentration (NEC). for t=1s time constant is 0.06 ppm for 60mW excitation power at 6528.76 cm⁻¹ 90 last points of each step averaged

Noise-equivalent absorption (NEA) coefficient $k=3.1\times10^{-9}$ cm⁻¹W/Hz^{1/2}

Biomarkers Present in Exhaled Human Breath

More than 400 different molecules in breath; many with well defined biochemical pathways

BROADBAND					
ABSORBERS	Compound	Concentration	Physiological basis/Pathology Indication		
	Acetaldehyde	ppb	Ethanol metabolism		
Acetone		ppm	Decarboxylation of acetoacetate, diabetes		
	Ammonia		protein metabolism, liver and renal disease		
	Carbon dioxide	%	Product of respiration, Heliobacter pylori		
	Carbon disulfide	ppb	Gut bacteria, schizophrenia		
	Carbon monoxide	ppm	Production catalyzed by heme oxygenase		
	Carbonyl sulfide	ppb	Gut bacteria, liver disease		
	Ethane	ppb	Lipid peroxidation and oxidative stress		
\rightarrow	Ethanol	ppb	Gut bacteria		
Ethylene		ppb	Lipid peroxidation, oxidative stress, cancer		
	Hydrocarbons	ppb	Lipid peroxidation/metabolism		
	Hydrogen	ppm	Gut bacteria		
	Isoprene	ppb	Cholesterol biosynthesis		
	Methane	ppm	Gut bacteria		
\rightarrow	Methanethiol	ppb	Methionine metabolism		
	Methanol	ppb	Metabolism of fruit		
	Methylamine	ppb	Protein metabolism		
	Nitric oxide	ppb	Production catalyzed by <i>nitric oxide synthase</i>		
	Oxygen	%	Required for normal respiration		
\rightarrow	Pentane	ppb	Lipid peroxidation, oxidative stress		
	Water	%	Product of respiration		

$9.56\ \mu m$ CW DFB QCL based QEPAS Ammonia Sensor

Noise–equivalent concentration (NEC) for t=1s time constant is 0.006 ppm for 20mW excitation power at 1046.4 cm⁻¹ (110 Torr)

Commercial widely tunable cw EC-QCL

wavelength, cm¹

DAYLIGHT

Motivation for Nitric Oxide Detection

- Atmospheric Chemistry
- Environmental pollutant gas monitoring
 - NO_x monitoring from automobile exhaust and power plant emissions
 - Precursor of smog and acid rain
- Industrial process control
 - Formation of oxynitride gates in CMOS Devices
- NO in medicine and biology
 - Important signaling molecule in physiological processes in humans and mammals (1998 Nobel Prize in Physiology/Medicine)
 - Treatment of asthma, COPD, acute lung rejection

High resolution spectroscopy with a $5.3\mu m$ EC-QCL

 Mode hop free scan of up to ~2.5 cm⁻¹ with a resolution <0.001cm⁻¹ (30MHz) can be performed anywhere within the tuning range

In collaboration with:

Magnetic Rotation Spectroscopy of Nitric Oxide

QCL based Quartz-Enhanced Photoacoustic Gas Sensor

Gas handling system

QEPAS characteristics:

- High sensitivity (ppm to ppb)
- Excellent dynamic range
- Immune to environmental noise
- Ultra-small sample volume (< 1 mm³)
- Sensitivity is limited by the fundamental thermal TF noise
- Compact, rugged and low cost
- Potential for trace gas sensor networks

High resolution EC-QCL based QEPAS

External Amplitude Modulation:

- •QTF is used as a mechanical chopper at *f*=~32*kHz*
- No chirp associated with the laser current modulation
- High resolution mode-hop-free tuning is possible

Design of an EC-QCL Based Remote Sensing System

- An upgraded version of a fourlaser pulsed QCL system
- The optical set-up, electronics and control software modified for CW-QCL operation
- First tests performed with a DFB CW-QCL operating at ~5.5µm

Outdoor Open Path Measurements (Influence of Atmospheric Transmission)

Simulated Transmission @ 1826.5 cm-'

<u>⊢0.1</u>

-0.01

-8

-8

1000.

High resolution spectroscopy with a 5.3 μ m EC-QCL

EC-QCL allows selection of an absorption line with:

- Higher Line Intensity
- Lower Spectral Interference
- Higher Atmospheric Transmission

Monitoring of broadband absorbers

- Freon 125 (C_2HF_5)
 - Refrigerant (leak detection)
 - Safe simulant for toxic chemicals, e.g. chemical warfare agents
- Acetone (CH₃COCH₃)
 Recognized biomarker for diabetes

QEPAS based Freon 125 and Acetone concentration measurements with a tunable 8.4 μ m CW EC-QCL

Freon 125 with an average laser power of 6.6 mW

band absorbers

QEPAS Performance for 12 Trace Gas Species (March '08)

Molecule (Host)	Frequency, cm ⁻¹	Pressure, Torr	NNEA, cm ⁻¹ W/Hz ^{1/2}	Power, mW	NEC (τ=1s), ppmv
H ₂ O (N ₂)**	7306.75	60	1.9×10 ⁻⁹	9.5	0.09
HCN (air: 50% RH)*	6539.11	60	< 4.3×10 ⁻⁹	50	0.16
$C_2H_2(N_2)^*$	6523.88	720	4.1×10 ⁻⁹	57	0.03
NH ₃ (N ₂)*	6528.76	575	3.1×10 ⁻⁹	60	0.06
$C_2H_4(N_2)^*$	6177.07	715	5.4×10 ⁻⁹	15	1.7
CH ₄ (N ₂)*	6057.09	950	2.9×10 ⁻⁸	13.7	2.1
CO ₂ (breath ~100% RH)	6361.25	150	8.2×10 ⁻⁹	45	40
$H_2S(N_2)^*$	6357.63	780	5.6×10 ⁻⁹	45	0.20
CO ₂ (N ₂ +1.5% H2O) *	4991.26	50	1.4×10 ⁻⁸	4.4	18
CH ₂ O (N ₂ :75% RH)*	2804.90	75	8.7×10 ⁻⁹	7.2	0.12
CO (N ₂)	2196.66	50	5.3×10 ⁻⁷	13	0.5
CO (propylene)	2196.66	50	7.4×10 ⁻⁸	6.5	0.14
N ₂ O (air+5%SF ₆)	2195.63	50	1.5×10 ⁻⁸	19	0.007
C ₂ H ₅ OH (N ₂)**	1934.2	770	2.2×10 ⁻⁷	10	90
C ₂ HF ₅ (N ₂)***	1208.62	770	7.8×10 ⁻⁹	6.6	0.009
NH ₃ (N ₂)*	1046.39	110	1.6×10 ⁻⁸	20	0.006

* - Improved microresonator

** - Improved microresonator and double optical pass through ADM

*** - With amplitude modulation and metal microresonator

NNEA - normalized noise equivalent absorption coefficient.

NEC – noise equivalent concentration for available laser power and $\tau=1s$ time constant, 18 dB/oct filter slope.

For comparison: conventional PAS 2.2 (2.6)×10⁻⁹ cm⁻¹W/√Hz (1,800; 10,300 Hz) for NH₃*, (**)

* M. E. Webber et al, Appl. Opt. 42, 2119-2126 (2003); ** J. S. Pilgrim et al, SAE Intl. ICES 2007-01-3152

Future of Chemical Trace Gas Sensing

New design of fast broadly tunable EC-QCLs (2008)

- New optical configuration Folded cavity (configuration #1)
 Fast tuning capabilities:
 Coarse Broadband Scanning
 - (~55 cm⁻¹ @5µm) <u>up to 5 KHz</u> (compared to available technologies <10Hz)
 - High resolution mode-hop free tuning (~3.2 cm⁻¹ @5µm)
 <u>up to 5 KHz</u>

(compared to available technology 100-200 Hz)

Wireless Sensor Networks for Gas Sensing

- Each point called "mote"
- Advantages?
 - Spatial resolution
 - Measure fluxes
- What is needed?
 - Low power
 - Low cost
 - Ultra miniature
 - Replicable
 - Autonomy

Miniature QEPAS CO₂ sensor (λ =2µm) v2.0 boards

- Small size
- Relatively low cost
- High efficiency switching power supplies
- PWM Peltier cooler driver
- 0.2W control system power consumption
- Detection sensitivity* of CO₂ 110 ppm with 1sec. lock-in TC
- Over 10³ improvement in sensitivity is possible @4.2μm

*G. Wysocki, A. A. Kosterev, and F. K. Tittel "Influence of Molecular Relaxation Dynamics on Quartz-Enhanced Photoacoustic Detection of CO₂ at λ = 2 µm", Applied Physics B 85, 301-306 (2006)

Miniature LAS CO₂ sensor (λ =2.7 μ m) boards

Summary & Future Directions of QCL based Gas Sensor Technology

- Quantum and Interband Cascade Laser based Trace Gas Sensors
 - Compact, tunable, and robust
 - High sensitivity (<10⁻⁴) and selectivity (3 to 500 MHz)
 - Capable of fast data acquisition and analysis
 - Detected 13 trace gases to date: NH₃, CH₄, N₂O, CO₂, CO, NO, H₂O, COS, C₂H₄, H₂CO, SO₂, C₂H₅OH, C₂HF₅ and several isotopic species of C, O, N and H.
- New Applications of Trace Gas Detection
 - Environmental Monitoring (urban quality H₂CO and, isotopic ratio measurements of CO₂ and CH₄, fire detection and quantification of engine exhausts)
 - Industrial process control and chemical analysis (NO, NH₃, H₂O, and H₂S)
 - Medical & biomedical diagnostics (NO, NH₃, N₂O, H₂CO and CH₃COCH₃)
 - Hand-held sensors and sensor network technologies (CO₂)

• Future Directions and Collaborations

- Improvements of the existing sensing technologies using novel, thermoelectrically cooled, cw, high power, and broadly wavelength tunable mid-IR interband and intersubband quantum cascade lasers
- New applications enabled by novel broadly wavelength tunable quantum cascade lasers based on heterogeneous EC-QCL (i.e sensitive concentration measurements of broadband absorbers, in particular VOCs, HCs and multi-species detection)
- Development of optically gas sensor networks based on QEPAS and LAS

